Details
-
AboutStudent
-
SkillsC, Java
Joined devRant on 8/28/2016
Join devRant
Do all the things like
++ or -- rants, post your own rants, comment on others' rants and build your customized dev avatar
Sign Up
Pipeless API
From the creators of devRant, Pipeless lets you power real-time personalized recommendations and activity feeds using a simple API
Learn More
-
POSTMORTEM
"4096 bit ~ 96 hours is what he said.
IDK why, but when he took the challenge, he posted that it'd take 36 hours"
As @cbsa wrote, and nitwhiz wrote "but the statement was that op's i3 did it in 11 hours. So there must be a result already, which can be verified?"
I added time because I was in the middle of a port involving ArbFloat so I could get arbitrary precision. I had a crude desmos graph doing projections on what I'd already factored in order to get an idea of how long it'd take to do larger
bit lengths
@p100sch speculated on the walked back time, and overstating the rig capabilities. Instead I spent a lot of time trying to get it 'just-so'.
Worse, because I had to resort to "Decimal" in python (and am currently experimenting with the same in Julia), both of which are immutable types, the GC was taking > 25% of the cpu time.
Performancewise, the numbers I cited in the actual thread, as of this time:
largest product factored was 32bit, 1855526741 * 2163967087, took 1116.111s in python.
Julia build used a slightly different method, & managed to factor a 27 bit number, 103147223 * 88789957 in 20.9s,
but this wasn't typical.
What surprised me was the variability. One bit length could take 100s or a couple thousand seconds even, and a product that was 1-2 bits longer could return a result in under a minute, sometimes in seconds.
This started cropping up, ironically, right after I posted the thread, whats a man to do?
So I started trying a bunch of things, some of which worked. Shameless as I am, I accepted the challenge. Things weren't perfect but it was going well enough. At that point I hadn't slept in 30~ hours so when I thought I had it I let it run and went to bed. 5 AM comes, I check the program. Still calculating, and way overshot. Fuuuuuuccc...
So here we are now and it's say to safe the worlds not gonna burn if I explain it seeing as it doesn't work, or at least only some of the time.
Others people, much smarter than me, mentioned it may be a means of finding more secure pairs, and maybe so, I'm not familiar enough to know.
For everyone that followed, commented, those who contributed, even the doubters who kept a sanity check on this without whom this would have been an even bigger embarassement, and the people with their pins and tactical dots, thanks.
So here it is.
A few assumptions first.
Assuming p = the product,
a = some prime,
b = another prime,
and r = a/b (where a is smaller than b)
w = 1/sqrt(p)
(also experimented with w = 1/sqrt(p)*2 but I kept overshooting my a very small margin)
x = a/p
y = b/p
1. for every two numbers, there is a ratio (r) that you can search for among the decimals, starting at 1.0, counting down. You can use this to find the original factors e.x. p*r=n, p/n=m (assuming the product has only two factors), instead of having to do a sieve.
2. You don't need the first number you find to be the precise value of a factor (we're doing floating point math), a large subset of decimal values for the value of a or b will naturally 'fall' into the value of a (or b) + some fractional number, which is lost. Some of you will object, "But if thats wrong, your result will be wrong!" but hear me out.
3. You round for the first factor 'found', and from there, you take the result and do p/a to get b. If 'a' is actually a factor of p, then mod(b, 1) == 0, and then naturally, a*b SHOULD equal p.
If not, you throw out both numbers, rinse and repeat.
Now I knew this this could be faster. Realized the finer the representation, the less important the fractional digits further right in the number were, it was just a matter of how much precision I could AFFORD to lose and still get an accurate result for r*p=a.
Fast forward, lot of experimentation, was hitting a lot of worst case time complexities, where the most significant digits had a bunch of zeroes in front of them so starting at 1.0 was a no go in many situations. Started looking and realized
I didn't NEED the ratio of a/b, I just needed the ratio of a to p.
Intuitively it made sense, but starting at 1.0 was blowing up the calculation time, and this made it so much worse.
I realized if I could start at r=1/sqrt(p) instead, and that because of certain properties, the fractional result of this, r, would ALWAYS be 1. close to one of the factors fractional value of n/p, and 2. it looked like it was guaranteed that r=1/sqrt(p) would ALWAYS be less than at least one of the primes, putting a bound on worst case.
The final result in executable pseudo code (python lol) looks something like the above variables plus
while w >= 0.0:
if (p / round(w*p)) % 1 == 0:
x = round(w*p)
y = p / round(w*p)
if x*y == p:
print("factors found!")
print(x)
print(y)
break
w = w + i
Still working but if anyone sees obvious problems I'd LOVE to hear about it.38 -
So I cracked prime factorization. For real.
I can factor a 1024 bit product in 11hours on an i3.
No GPU acceleration, no massive memory overhead. Probably a lot faster with parallel computation on a better cpu, or even on a gpu.
4096 bits in 97-98 hours.
Verifiable. Not shitting you. My hearts beating out of my fucking chest. Maybe it was an act of god, I don't know, but it works.
What should I do with it?241 -
The world will remain fucked up until the moment when backend devs will get as much credit as front end. Backend devs unite! All servers down so they can see who has real power!10
-
!rant
Sad to make my first post here a depressing one, but I really hope that some of you have some tips to help in this line of work.
If anyone of you suffer from depression, how do you cope with it? How do you keep yourself motivated and don't start this self-loathing that I'm currently in? Other than antidepressants or therapy (already have meds).
Why I'm asking is because I have a very tough time getting motivated these days and right now I really need to be most active. I need to do a lot of small and big stuff at my work and at the same time try to graduate from school. The deadline for my thesis is at the start of May, which surely seems far away now, but it does not feel like enough.
The more I understand the systems that I'm working with, the more I can see how much I may have f*cked everything up and I build this never-ending list of tasks for myself in my head to try and fix everything. Which leads to a complete lockup with anxiety and I can't get anything done.
I don't believe in myself or my code anymore. I'm afraid of pushing anything to production. I also don't have anyone else to help me with my work, as I'm the only developer in the company (we have a service provider where most of the big stuff happens).
To add to all this, I have been sick for the last 4 days.
I truly am in a bad place right now.22